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The Martin-Schwinger-Puff theory for a many-fermion system is applied to a calculation of the appro
priate density propagator. The real part of this function, the system's polarizability, is a measure for the 
lowest order change in energy due to a harmonic density ripple enforced on the infinite system. The imaginary 
part, the linear response function, yields the inelastic cross section for the scattering of a weak external agent. 
The linear response contains additional information on excited states and, in particular, on collective states, 
excited by an external field. The formalism necessitates the calculation of the self-energy of a particle and 
from it the optical model for nucleon scattering can be derived. The relation of the theory to perturbative and 
other nonperturbative approaches is discussed and a comparison is made with a calculation of the polariza
tion energy of nuclear matter by Koltun and Wilets. 

1. INTRODUCTION 

A GREAT variety of techniques has been developed 
in recent years as tools for the study of many-

fermion systems.1 As far as these systems are non-
superconducting most of the techniques have been 
devised to expand primary quantities, such as the 
ground-state energy, in a perturbation series (partially 
summed eventually) in terms of a two-body interaction. 
This common point in method is also reflected in the 
basic results obtained: There is virtually no difference 
in the description of, say, the plasmon state of an 
electron gas and the ensuing screening of the bare 
interaction between electrons whether the approach is a 
dielectric formulation,2 the random phase approxi
mation,3 Feynman diagram techniques,4 or a lineari
zation of equations of motion.5 It is only in finer 
details that results obtained by different theories start 
to diverge. In a novel approach to the many-body 
problem, which is nonperturbative and which resembles 
cluster expansions commonly used in statistical me
chanics, one expresses ground-state properties in terms 
of Green's functions. In a rigorous theory functions of 
various orders are mutually connected and in any 
approximation scheme one has to decide where re
cursive relations are replaced by a set of self-contained 
soluble equations. 
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In the Martin-Schwinger-Puff theory,6,7 which we 
shall apply below, stress is laid on the fact that Green's 
functions satisfy simple boundary conditions provided 
those functions are defined as grand canonical ensemble 
averages. Ground-state properties are then defined as 
properties of the system in the zero-temperature limit. 

The theory has been applied successfully to a calcu
lation of the binding energy and density of nuclear 
matter in its ground state.7 The underlying approxi
mation amounts to the neglect of correlations between 
more than two particles, retaining the effect of corre
lations between two particles in a certain scattering 
matrix. The way the approximations are made, how
ever, spoils the fundamental symmetry between the 
particles and has been shown to amount to an average 
treatment of statistics instead of a rigorous one.7,8 The 
satisfactory results obtained for energy and density 
encourage one in the belief that the approximations 
are adequate for the conditions that prevail in nuclear 
matter and that, consequently, one should take full 
advantage of the easily soluble model that results. 

In what follows we present a calculation of the density 
propagator for a self-bound fermion system. This 
quantity, which is closely related to the generalized 
dielectric constant, enables the calculation of several 
characteristic properties of the system in its ground 
state which did not receive attention by Puff. We first 
mention the polarizability of the medium, the im
portance of which has recently been stressed.9,10 

A second problem of interest is the existence of 
anomalous bound states as occurring in superconductors 
on one hand11 and of collective states like zero sound 
on the other hand.1213 

6 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 
7 R. D. Puff, Ann. Phys. (N. Y.) 13, 317 (1961). 
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We define in Sec. 2 below the density propagator for a 
system in its ground state, where the latter is defined 
as the state to which the system approaches in the 
limit T—»0. In case such a unique state exists, the 
relations with the system's polarizability and response 
to an external field is established in the usual way. 

Section 3 contains a compilation without rigorous 
proofs of statistical Green's functions, their relations 
and the Martin-Schwinger-Puff (MSP) approximation 
which enable a calculation of one-body and two-body 
Green's functions. I t is then shown in Sec. 4 how the 
density propagator can be determined from a two-body 
Green's function with a special choice of coordinates. 
Consequent use of the MSP approximation yields a 
closed expression in terms of functions which have been 
or may be calculated for a given two-body interaction. 

In Sec. 5 we recall the relation between the response 
function on one hand and the spectral function and 
various physical quantities on the other. Mention is 
made in particular of the feasibility of a calculation of 
the optical potential for scattering of nucleons off 
nuclear matter. 

In the last section finally a comparison is given with 
the theories of Gottfried and Pieman13 and of Koltun 
and Wilets.9 Results of actual calculations will be 
presented in a separate paper. 

2. THE GROUND-STATE DENSITY PROPAGATOR 

We shall be concerned in the following with some 
ground-state properties of a many-fermion system. The 
particular Green's function technique which we shall 
invoke for the determination of those properties is most 
powerful if first grand ensemble averages over states 
are taken. We thus consider the grand canonical 
weighting operator 

P = lima_x Z-'iir^Q) e x p [ - * Y ( # - j u 9 l ) l (1) 

with H the Hamiltonian of the system including 
two-body forces and 91 the particle operator.14 0 and 
fx are the volume and the chemical potential, respec
tively. Instead of the temperature, ir= {kT)~l is used 
for convenience. Z finally is the grand canonical parti
tion function, which properly normalizes the distribu
tion. Averages of operators X are then defined by 
means of (1) as 

(X)=lim0_00 Z-l{ir,ix£l) T r { e x p [ - M # - M 9 i ) ] X } . (2) 

The ground state is now defined as the one singled out 
in the limit IT—>QO. Such a definition is possible 
provided H—p3l has a unique lower bound, in which 
case we call E0(N0)/Q and N0/Q the values of (H)/Q 
and (9l)/Q which dominate for zY—»oo. Equation (2) 
then reduces to 

<X)0= sr1 E r o <A7oEo(:Yo)foIX | A'o£0(# o)fo>, (2a) 

f is reserved for all quantum numbers other than N and 
14 Units h — 2m=l are used throughout. 

E: f o thus accounts for degeneracies in the ground state, 
the degree of which is denoted by z. 

The chemical potential in the limit IT —>CO can be 
shown to equal6,7 

dE0(N0) Eo(No) P 
M = " 

dNi No 
(3) 

with p = Ao/0 and P the pressure. A system such as 
nuclear matter has the property of binding itself at a 
certain density, po^O, in absence of external pressure; 
this property renders fjLo=E0(No)/N0<0. The binding 
forces in the nuclear case are even strong enough to 
make MO< — -h^, with — es the energy of the lowest 
bound state of the two-particle system. Both properties 
considerably simplify the calculation of ground-state 
properties like energy and density. 

The quantity which we shall discuss below is the 
propagator for density fluctuations in the ground 
state.13,6,15 Its definition reads 

Z>(qco) = (3)(q«))o=—i lim / / d(/i—/2)<*(xi—x2) 

Xeico(n~^2)^q-(xi-x2)^r{5p(l)5p(2)}). (4) 

T in (4) denotes Wick's time-ordering operator, and 
i=x,-/». 8p(l) is the operator describing density fluctua
tions from its average, (p(ffi))o=(£n$(xn—Xi))o and is 
given bv 

8p(l) = eiH*p(xl)e-iH^(p(x1))o. (5) 

Again the zero-temperature limit will single out the 
ground state, such that 

D(qo>) = «•/ d(h-h)d(xl-~x2)e
i»(tl-t2)e~i(i-(xl-X2) 

Xz~l E (NoE0(No)to\ T{8p(l)8p(2)} \ 
ro 

XA7o£oOVo)fo>o. (6) 

Since the operator 8p does not change the number of 
particles, one can work in the subspace of No particles. 
Let us, in that subspace, denote by |wfn) and wn0, 
respectively, the states and excitation energies reached 
by dp out of the ground state. I t is then an easy matter 
to expand (6) in terms of the complete set |wf„) 
leading to 

„, , ,. t ^ .K^kiOfo)!2 

Z)(qoj)=hms-1 £ e~*° To,»,fn I CO — Wn0 + '?*€ 

K«rn[pqt|ofo}|2 

W — COftQ— t€ 

-\-2wi8 (oo)z~l 

XEI(OfoIpq|Of0)|
2, (7) 

fo 
18 L. van Hove, Phys. Rev. 95, 249 (1954). 
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where instead of p(x) we introduced its Fourier com
ponent Pq=X!n etqXn. 

The importance of D(qu>) as a source of information 
for nuclear properties is well known. Consider, for 
instance, the system subject to an interaction through 
a weakly polarizing density fluctuation of strength a0: 

F = y t = i ( I O ( P q + P q t ) > (8) 

The ensuing polarization energy is defined as the 
second order shift in the ground-state energy. Strictly 
speaking one has to define the perturbed ground state 
from the beginning, replacing everywhere the Hamil-
tonian by H-\- V. This program has been carried out by 
Koltun and Wilets9 and a comparison will be deferred 
to Sec. 6. The energy shift due to F, Eq. (8), is trivally 
seen to be16 

E C 2 > s _ i [ a ( q ) + a ( _ q ) ] a o 2 = - i a o 2 s - i 

I (»r» I Pq I 0f0> I 2 + I <»fn | Pqt | 0f0> |2 

x E' - (9) 
COnO 

with a(q) the static polarizability of the medium in its 
ground state,16 

|<»fn|pq|0fo)|2 

a(q) = i ^ £ ' . (10) 
w^Ojfo.fn C0no 

One determines in the same fashion the lowest order 
change in the k Fourier component of the particle 
density, namely, 

p ^ ( k ) = -ao{a(q)+a(-q)}5<*>(k-q) . (11) 

It is now an easy matter to connect a (q) with the density 
propagator, and one has in fact 

a ( q ) + a ( - q ) = - R e Z > ( q O ) = - Z ) ( q O ) . (12) 

Also the absorptive part of D has physical meaning. 
Denoting by 6 the usual step function, one infers from 
(7) that 

Riq^^w-1 lm£>(qco)0(co) 

= *"1 E K«fn|pq|Of0)|25(co-con0), (13) 
«,fn,£*0 

which function describes the system's response to the 
q Fourier component of any external field. R(qoo) is, 
apart from a trivial factor, the inelastic cross section 
in Born approximation for scattering of a particle or 
field by a system to which it imparts momentum fiq 
and energy fu*. This quantity contains information of 
paramount importance such as the excitation spectrum 
and transition probabilities from the ground state 
induced by an external field, and is measurable provided 
the conditions for which the Born approximation holds 
actually prevail. For an exhaustive and lucid exposition 

16 The sums in Eqs. (9) and (10) have, in the limit O —>°o, to be 
looked upon as principal-value integrals. 

of the theory of the linear response function for a 
many-fermion system, the reader is referred to a recent 
review article by Glick.17 

One of the objectives of the study of the response 
function jR(qco) has already been mentioned, namely, 
the detection of possible collective states. 

One notices, incidently, that the existence of a 
collective density fluctuation bears also on the interpre
tation of the static polarizability a(q), Eq. (10). In 
case zero sound exists, it contributes in a collective way 
to the weighted transition probabilities as appearing 
in a(q). The intimate relation between a(q) and D(qco) 
can also be expressed in terms of a dispersion relation, 
to be found from (7) and (10): 

1 r 
a ( q ) + a ( - q ) = —/> 

2TT 

ImD(qw) 
-dw 

r° lm/;(qco) 1 
(14) 

Since we wish to express the density propagator 
(4) in terms of Green's functions, we first briefly review 
definitions and some properties without going into 
much detail or providing proofs. Extensive discussions 
can be found in the work of Martin and Schwinger,6 

Puff,7 and Koltun and Wilets.9 

3. STATISTICAL GREEN'S FUNCTIONS AND THE 
MARTIN-SCHWINGER-PUFF APPROXIMATION 

The w-body Green's function in the limit ir—>°o is 
defined as 

G B ( l - - -» , l / - - ->0 

= lim ( - < ) n < r w ( D - • -iK»)*t(w ')- • ^ ( i ' ) }> 
iT-*oo 

= lim l imZ-1( ir ,Mil2)(- /)nTr[exp(-ir( Jff-At9l)) 
IT-+0O ft-*00 

x r W ( l ) . ^ ( # ( » ' ) . . . f ( l ' ) } ] ; (15) 

A boundary condition for all Gn follows from the 
cyclic property of the trace operation in (15), viz., 

G„(- ••,rir,- • . ) = - G n ( - • >rfl,- • • ) ; O^t^r. (16) 

The simplicity of this boundary condition is a conse
quence of the use of a grand canonical averaging 
procedure and is useful enough to justify the study of 
the ground state as the ir —»c° limit of a finite tempera
ture situation. 

One derives from the equation of motion for a field 
operator, ^=i[ZZ,^]_, a set of coupled equations, which 
can be given in either differential or integral form. We 
meniton as particular cases 

(i—+Al+A Gi( l l ' ) 

+*(12|»|34X?2(34; 1'2+) = 54(11'). (17) 
r A. J. Glick, Ann. Phys. (N. Y.) 17, 61 (1961). 
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(121 v 134) in (17) stands for a nonlocal potential 

(l2\v\34)=d(h-t2)8(t2-h)d(h~U)6(Uxi+X2~Xz--X4)) 
X( |x i -x 2 |M |x 3 -X4! ) ; (18) 

t+ indicates a time infinitesimally larger t. In (17) and 
henceforth, integration over repeated coordinates is 
implied. Internal coordinates will, for reasons of 
simplicity, not be denoted, but their explicit inclusion 
can always be made in a trivial way. 

Apart from Gi(ll') as denned in (17), one introduces 
a convenient, auxiliary quantity Gi°(ll') which is the 
solution of (17) with v equal to 0. 

Corresponding to (17) one has an equation for G2 

which, in integral form, may be written as7 

GJ(12;l/2/) = C?i(ll/)Gi(220-G(120G(21/) 
+Ji[G1

0(13)G1(24)+Gi(13)Gx0(24)] 
X<34|z;|56)G2(56; 1'2')+C. (19) 

In C are contained Green's functions or correlations of 
order three which, in turn, are coupled to Green's 
functions of still higher orders. In any attempt to 
calculate Green's functions, one interrupts the coupled 
set of equations of which (17) and (19) are examples. 
The MSP approximation, for instance, is defined by a 
neglect of C and a replacement of G\ inside the bracket 
in (19) by Gi°. The first approximation amounts to a 
neglect of three-particle correlations while for the 
second approximation there is no reason other than a 
considerable simplification of the calculations. Together, 
the approximations amount to a neglect of certain 
four-particle correlations in a way that spoils the basic 
symmetry between the particles and which thus 
indicates an inexact treatment of statistics. Once the 
MSP approximation is made, one can proceed to 
determine G\ and G2. One first proves that a "wave 
matrix" 12, defined by 

G2(12; l,2,) = <12|O|34)G1(310Gi(42')), (20) 

satisfies the following integral equation: 

(12|O|l ,2 ,)=5(ll ,)5(22 ,)-5(12 ,)5(210 

+^I°(13)GI°(24)(34IZ;I56><56|S2|1 ,2 ,>. (21) 

Next one introduces a scattering matrix T by 

<34|r|l'2'>==<34M56X56|Q|l'2'>, (22) 

which by use of (20) is seen to be a solution of 

(121 T11'2^H12 M l'20-~ (12 M 2'1') 
+i(12\v\U)Gl°(35)Gl»(46)(S6\T\V2'). (23) 

On substituting (23) into (19), there results, after the 
described approximations, 

(;«(12;l/2,)«Gi(110G1(22/)-G1(12/)G1(2r) 
+tGl°(13)G1°(24)<34| r|56)G(51')G(62'). (24) 

In a similar fashion one extracts from (17), (20), and 
(22) a differential equation for Gi: 

(idM+AH-M)Gi(ll') 
+i(12|^|34)G1(31,)Gl(42,) = 5(ll ,). (25) 

Space and time translational invariance favors the use 
of Fourier transforms over the coordinate-time represen
tation of the Green's functions. One shows, for instance, 
from (16) and (25) with V=T=Q, that the Fourier 
transform of Gi°(ll') equals 

G1°(kco)= fdfa-xMih-ti) 

X^c«i-«i')erik.(xi-.i')Go(ll/) 

0(k2-M) 0(-k 2+M) \ / 9 

= lim( 
k2+fjL+ie <jo—k2+fj,—ie) 

(26) 

Actually for ir—» co, ii—*fj,Q<0 only the forward 
propagating part of Gi°(ko>) in (26) survives. Thus 

G1°(kaJ) = lim^o(a)--k2+M+ie)-1. (27) 

One sees here a difference from the Feynman propagator 
Gi° in a perturbative treatment, which is of the form 
(26) with fx>0. This difference has far-reaching compu
tational consequences. 

The next quantities of interest are the £1 and T 
matrices, which for an instantaneous interaction V, 
depend on one frequency only. We denote relative 
momenta by k= J(ki—k2), k'=J(ki'—k2 '); and center-
of-mass momenta by K= K / = k i + k 2 = k / + k / , which 
momenta are conjugate to x, x', X, and X'. In terms of18 

<ki* k')= fe-fk-*(x\v\*)eik'-*'4xix', (28) 

we then find for the Fourier transform of 0, Eq. (21) 

<k|Or+(«)|k'> 

• / 

dXdxdx'dh exp[*'K- (X—X')] exp(—ik-x) 

Xexp(ik'-x') exp[iu(li-ti'y](12\Q+\ 1'2'> 

= (2ir)3[53(k-k')-S3(k+k')] 

dk" 
+ lim (a>-4K2- 2k2+2A.+*'e)-1 ' /<k|»|k"> 

J (2T)« (2T)» 

X<k"|0Kt(w)|k'> (29) 

dk" 

(27)' 
"The Fourier transforms of v, U, and T are defined here 

differently from Puff, in that they possess an additional factor 

<k| 
r dk" 

7 y » | k ' ) = / <k|»|k"> <k"|oKt(„)|k' 
J fa)3 ) 
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in turn is the Fourier transform of (23) and satisfies the 
following integral equation: 

<k|rK+(a>)|k'> 

= ( k | I ) | k ' ) - ( k | H - k ' ) 

dk" (k |» |k")(k" |rK+(co) |k '> 

V of the particle: 

+/ 
(2*-)' » - J K f - 2 k " » + 2 / i + » € 

(30) 

The analytical behavior of T(z), the scattering matrix 
"off the energy shell" has first been studied by Watson.19 

He proved quite generally that the T matrix is an 
analytical, bounded function in the complex z plane 
except for isolated poles and a branch line on the real 
axis corresponding to bound states and scattering 
states of the two-body system in the absence of the 
medium. I t is clear from (30) that for cu <WK=iK2—2/x 
is continuous across the real axis. For W>O)K, on the 
other hand, the peculiar form (27) of Gi° causes the 
appearance of T+ with "outgoing'' waves only. On 
integrating over a> the device prescribes passing above 
the singularities of the T matrix. 

We shall also need Gi(kw), the Fourier transform of 
the one-body Green's function. From (25) one derives 
the equation it satisfies, viz., 

Gi(ki«i) = ui—kx
2+jA—i l im 

J (S 

J k 2 do)2 
ptetf 

(2TT)3 2T 

X<k|rK+(«i+a>2) |k;>Ci(ft2W2)T. (31) 

I t is convenient to use the spectral decomposition of 
Gi(kco) by use of A (kco), the latter being defined by 

Gi(kw) = 
dcofrA(W)e(a>') A(ka>f)d(-a>')-

2TTL. W—a)f-\-ie o'-ie i' 
and satisfying 

/ 

dcoi 
— ^ ( k l W 1 ) = i . 

(32) 

(33) 

t ) (k i«0 

The spectral function is connected with the dis
continuity across the real axis of G(o>), the analytical 
continuation of G(co). In fact, 

A (kiwi) = lmv*0 CG(ki coi+ie) —G(ki o)X—ie)], (34) 

Returning to (31) one sees that the analytical 
properties of T enable one to close the co2 contour in the 
upper half plane. After substitution of (32) into (31), 
there results 

G1(k1o)1) = [o ; 1 -k 1
2 +M-^(kia j 1 ] - 1 , (35) 

where G has been expressed in terms of the self-energy 

19 K. M. Watson, Phys. Rev. 103, 489 (1956). 

• / 

<fk2 do)2 

(2x)3
 2TT 

•A(k2U)2)d(—a)2) 

X(k|rK(o)1+a J 2) |k) . (36) 

Equations (34), (35), and (36) show that for cui<0, 
^(kiwi) is also continuous across the real axis and 
determines the negative-frequency portion of A, viz., 

A (k1aji)0(-co1) = 27rp(ki)5(a?-a?(k1)). (37) 

p(ki) in (37), the momentum distribution of a particle, 
equals 

p(ki) = { l - C W C k i w i V d w ! ^ ^ ^ ) } - 1 , (38) 

with oj(ki) the negative definite solution of 

(o(k1) = k1
2-M+ eU(k1a;1)0(-W l) . (39) 

The particles described by the dispersion relation (39) 
are thus undamped quasi-particles, owing to the reality 
of e0(kio;i)^(-co1). 

For a calculation of the ground-state energy and 
density, knowledge of G(kco) for negative frequencies 
only is required.6'7 The simultaneous solution of (31), 
(36)-(39) then determines the required quantities. 
However, in what follows we shall also need G(kcu) for 
positive frequencies. One notices that it is possible to 
substitute (37) into (36) in order to obtain for all co 

1)(k1co1)= + 
/ 

dk2 

(M 
•p(k2)(k|rK

+(co1+a>(k2))|k). (40) 

Besides V(ku)6(—«) and the quantity eU(kw(k)) 
X0[—<*>(k)] being the real effective potential experi
enced by a particle in the Fermi sea, we shall have to 
calculate 'U(kco) for w>0. Whereas Ree0(kw) remains 
continuous, ImeU(koj) suffers a discontinuity due to the 
one in T"4". Remarks as to the physical interpretation of 
1)(ka>)0(a>) are deferred to Sec. 5. 

In the following section we shall complete a formal 
derivation of the density propagator in terms of Green's 
function. 

4. CALCULATION OF THE DENSITY PROPAGATOR 

We have shown in Sec. 2 that the density propagator 
in the form of Eq. (6) from which its physical content 
is most apparent, is the limit IT —> oo of an ensemble 
average. I t is now an easy matter to express -D(qw), 
Eq. (4), in terms of Green's functions defined by (15) 
in the same limit. Indeed one has for the autocorrelation 
function occurring in (4) 

<r{5p(l)6p(2)})0 

= - G 2 ( 1 2 ; l+2+)-<p(Xl)>o<p(x2)>o. (41) 

The average densities (p(x))0 in turn are also readily 
identified by means of (15) to be 

<p(X l)>=-*G(l l+) . (42) 
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We can thus substitute (41) and (42) into (4) and 
apply (29) in the MSP approximation to show that 

D(qo)) = i f [d(xl-x2)d(tl-t2)e
i«^-t*)e~i*-^~x*) 

XCG1°(13)G1
0(24)(34|r|56)Gi(51+)G:(62+) 

-G(12+)G(21+)] 

=ZMq«)+ZMq«). (43) 
D\ and D2 denned by the two parts in the bracketed 
expression in (42) will be calculated separately. The 
first one is readily written as 

dcoi do)2 dki dk2 

while D(qo)) in the MPS approximation appears in 
Eqs. (45) and (46) as 

Z)(qco) = 
dki 

>(ki) 
r r dk2 

U (2̂ 0 
>(k2) 

(2T)« U (2TT)3 

XG1
0(ki+qcu(k1)+co)G1

0(k2~qa;(k2)-a )) 

X(k+q|rK{aJ(k1)+a;(k2)}|k) 

do)i/ ^4(ki+qcoi) r00 da)i / A (ki 

Jo 2 i r \ « ( k i ) -

Di(qcx))=— lim f'k wiBipwrfz-. 

2TT 2W (2T) 3 (2TT)3 

XGiHki+qcoi+co)GiHk2~qco2-co) 

X ( k + q | rK(coi+W2)|k)Gi(k1a;i)G1(k2a;2). (44) 

On substituting (32) for both d factors one then 
obtains for (44) by use of (37) 

(ki)— ui+u+ie 

4(k i—q«i ) 

co(ki)—-coi—o)-\-ie, )]• (48) 

I>i(q«)= f 
dki dk2 

~p(k1)p(k2)G1°(k1+qaJ(k1)+co) 
(2TT)3 (2TT)3 

XGi°(k2-qco(k2)~co) 

X(k+q|rK{c«;(k1)+a)(k2)}|k). (45) 

Since co(ki) and co(k2) are both negative, T for the 
relevant argument is real. Di(q0) and the corresponding 
part of the polarizability ai(q)+«i(—q) are real too, 
as they should be. 

D2(qo))y Eq. (43), is denned as (—i) times the Fourier 
transform of G(12+)G(21+). The result 

Go is defined by (27), while knowledge of p(k) and co(k) 
requires both a general solution of Eq. (30) and of the 
set (36)-(39). p and co have been given by a convenient 
polynomial fit to a numerical solution in powers of 
k/kp for an interaction used in Puff's work.8 We have 
those solutions in mind wherever p(k) and co(k) appear 
in the following. 

The only new feature is the appearance in (48) of the 
positive frequency portion of the spectral function A. 
We stress, however, the fact that ^l(kco)0(co) is, in 
principle, not more difficult to calculate than 
A(ko))6(—co) and its determination is from (31) and 
(34) seen to amount to a calculation of the discontinuity 
of ImG or T+ across the real axis. 

Before closing this section we wish to mention an 
approximative calculation of (46) based on the following 
identity, which results from (34) and (35)6: 

D2(qo>) = lim f 
*^o+ J 

do:i dki 
piuih 

,4(kco) = r (kco) /{[c-e(kc)] 2 +ir 2 (kco)} , 

e(kco) = k2-M+ReeO(ko)), 

r(kco) = 2ImeO(kco-fe). (49) 

2* (2TT)3 

XGi(k lWl)Gi(ki+qo>i+to) 

^ki .- . f ^4(ki+qa>i) 

In case [dr(k,co)/dw]w(k)<<l — [de(kto))/doT\<»w, one 
may approximate A (kco) by 

r00 don r dki r ^(ki 
- / _ / p(k0 — 

Jo 2wJ (2x)3 L«(ki) — coi+co+^e 

i 4 ( k i — q w i ) • 

CO ( k i ) — COi — CU+^€-
(46) 

A (kco)« 2TT5 (CO - e (k,co)) = 2TTP (k)5 (co - co (k)), 

co(k) being the root of co= e(kco) and 

Substitution of (50) into (46) then yields 

(50) 

is easily obtained by substituting (32) into (46). 
We are now in a position to summarize the results 

for, on one hand the lowest order energy shift E{2) and 
p (1), the density change due to the polarization pertur
bation (8), and the linear response function R(qa>) on 
the other hand. From (9)-(13) we have 

D2(qco)« 
dki 

( 2 ^ " 
-p< (ki) 

p> (ki+q) 

.co(ki)—co(ki+q)+co+?'e 

P>(ki -q) "I 

co (ki) — w(ki—q) — «+*€ J 
(46a) 

JE(2)/i^=|aoV1^(qO), 

P<
l> = aaD(q0), 

£(qco) = -7T-1 ImZ)(qco)0(co), (47) 

where < and > signs are intended to recall that the 
densities p stem from states with co < 0 and co>0. If, in 
particular, A (kco) is replaced by ̂ 4°(kco) = 27r5(co—k2+M), 
which is the spectral function corresponding to Gi°(kco), 
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Eq. (27), D2 attains the form 

dki 
D2(qco)« / p<(k1) 

(2T)» 

1 

.«(k1)-(k1+q)»+«+A«+^ 
1 

o?(ki)— (ki~q)2—w+M+ie. 
. (46b) 

Both (46a) and (46b) are typical Hartree-Fock approxi
mations to £>(qco) in that the explicit interaction part 
D\ does not occur. The expressions are still better than 
the simple Kramers-Heisenberg form of the polariza-
bility (see for instance references 2 and 3) in that at 
least one particle state appearing in (46a,b) is treated 
self-consistently and has a nontrivial energy-momentum 
relation. 

5. QUANTITIES CORRELATED WITH THE DENSITY 
PROPAGATOR AND THE SPECTRAL FUNCTION 

We wish to recall in this section the relation between 
various frequency moments of the ground-state response 
function i?(qco), Eq. (13), and other physical quantities. 
We first consider the first moment being the total 
oscillator strength or, apart from a trivial factor, the 
total inelastic cross section weighted by the energy 
transfer. I t is well known that for velocity-independent 
forces this quantity is independent of particle 
dynamics.17 In fact 

i?(qco)co<£o = ( I ^ P M J - ^ p q 2 . (51) 

Equation (51) yields no new information but provides 
instead an additional test as to the accuracy of the 
approximation scheme. 

The inverse first moment is from (14) and (13) seen 
to be related to the system's static polarizability. Since 
calculation of the latter has been one of the aims of this 
paper, there is no need for further discussion here. 

Finally the unweighted frequency integral of i£(qco) 
is related to the pair-correlation function717 whose 
Fourier transform equals (internal variables f restored) 

p i , ( q ) ^ 3 - 1 L f . p P f . ( q ) 

= j R(qui)d<0—p. (52) 

P(q) can thus be calculated in the MSP approximation 
by use of (14), (45), and (47). After some algebra and 
applying (29) and (33), there results 

dki dk-2 

pi'f.(q)= ' 
(2x)» (2T)« 

X(k+q|0Kf»{co(k1)+4o(k2)}|k)p(kI)p(k2) 

-(2T)«S»(q)/A (53) 

This is essentially the result which was obtained by 
Puff in a different way.7 

The quantities mentioned above are related to the 
two-body Green's function for a special coordinate-time 
arrangement. I t may be mentioned that there is also 
additional information in the one-body Green's function. 
The momentum distribution for instance has already 
been determined from the negative frequency portion 
of the spectral function .4(kw),7-8 Eqs. (37)-(39). 
Unfortunately, one is unable, within the A ISP approxi
mation, to study the interesting high momentum 
components of p(k) = JLx>°A (ko))do>/2w since the theory 
predicts for co <0 a fixed relationship co = co(k): the 
upper limit co = 0 also determines a cutoff momentumk/. 

We now return to the calculation of £>(qco) where we 
came across the particle's self-energy T)(ka>)0(«) as 
appearing in the one-body Green's function G(kco) 
- [co-k2+/i-eO(ka))]~1,'U(kco)0(co) tells how the motion 
of a particle above the Fermi sea is effected and thus 
bears a relation to the optical model potential. In the 
usual correspondence (see the preceding section) one 
defines a dispersion relation by 

co (k) = k2 - M +Ret ) (kco)0 (co) (54) 

which is assumed to be unperturbed by the imaginary 
part present in *0. The potential describing the scatter
ing of the particle is then 

with 
F1(k)-Re'0(kco(k)) , 

F2(k) = Im90(kco(k)). (55) 

Also here one pays for the simplicity of the model. 
Since T has a pole at JK2 — 2/x— e# and a branchpoint at 
|K2— 2/x, F 2 = 0 for unoccupied bound states with 
O^co^— IJL and for scattering states with — /x^co 
<C — 2/x— eB> 

The optical potential is not F(k), (55), but that 
potential averaged over many resonances. Such a 
procedure is conceptually even necessary in view of the 
analytical properties of the exact Gi(kco). From (32), 
for instance, Gi(kco) is seen to have singularities on the 
real axis only, whereas a complex V(k<a), which results 
in general from an approximation, would make the 
singularities of Gi(kco) [see Eq. (35)] complex. A 
reconciliation is then achieved by an averaging pro
cedure resulting in a replacement of co(k) by 
to(k) + |*T2(k), V2 being a finite width.20 

We recall here Bell's remark that proper treatment 
of the Pauli principle leads to an optical-model wave 
function expressed in terms of Gi(kco).21 Whereas Bell 
had a diagrammatical representation in mind, the clear 
physical picture given by him is equally valid for a 

20 G. E. Brown, Rev. Mod. Phys. 31, 893 (1959). 
21 J. S. Bell and E. J. Squires, Phys. Rev. Letters 3, 96 (1959); 

J. S. Bell, in Lectures on Fields Theory and the Many-Body Problem, 
Naples, I960 [Academic Press Inc., New York (to be published)]. 
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nonperturbative treatment. The estimate (55) above 
with the mentioned theoretical shortcoming should be 
meaningful for a situation where the incident nucleon is 
not discriminated from the target particles with regard 
to dynamical correlations as well as the treatment of 
statistics. We wish further to stress that it belongs to 
the potentialities of the approach of Koltun and Wilets 
to derive both the momentum distribution and the 
optical potential for an infinite medium under con
straint, i.e., possessing a density gradient. The variation 
with density of the above-mentioned quantities and, in 
particular, the behavior of the optical potential at the 
nuclear surface, undoubtedly constitute desirable in
formation. 

6. COMPARISON AND DISCUSSION 

The physical quantities we set out to derive, the 
polarizability and the response function of a fermion 
system in its ground state have received ample attention 
in the past, in particular with regard to the electron 
gas. Most discussions of nuclear matter for that purpose 
followed the same systematics, often lacking the 
necessary rigour. 

It seems that the Sch winger-Mar tin-Puff theory 
constitutes an approach with fresh content, which 
without free parameters at its disposal accounts in a 
satisfactory way for binding energy and equilibrium 
density. The correct outcome of those quantities is no 
guarantee for a corresponding agreement for other 
ground-state properties even if some of them, like the 
momentum distribution p(k) and the pair correlation 
function P(k), contain, in fact, the information neces
sary to calculate the ground-state energy. It is, however, 
tempting to investigate quantities like the system's 
polarizability, collective states, and optical model 
within the same framework, since the mentioned 
quantities appear all related to each other through the 
simple connection (20) and (21), of G2 and Gx. 

We now turn to a comparison with preceding treat
ments and in particular the one by Gottfried and 
Pieman,18 who also formulate the problem of the linear 
response in terms of ground-state Green's functions. 
The cornerstone there is the Migdal-Galitskii integral 
equation for G2,

22 which is cited here for comparison 

G2(12;l/2,) = Gi(ll ,)6;
1(220-Gi(12 ,)G(2l0 

+Gi(13)G1(2
,4)<34|r|56)G2(52; 1'6). (56) 

In order to solve for G2 one is bound to approximate 
the formal kernel T in (56). Gottfried and Pi&nan sug
gested an expansion in a series of T matrices. In the 
low-density limit for short-range forces only one T matrix 
is retained, which is eventually approximated by a 
scattering length. This lowest order approximation 

22 V. M. Galitskii and A. B. Migdal, J. Exptl. Theoret. Phys. 
34, 139 (1959) [translation: Soviet Phys.—JETP 7, 96 (1958)]. 

then amounts to the random-phase approximation for 
a system of zero range of appropriate strength.28 

Equation (56) has to be contrasted with the approxi
mate MSP Eq. (24) for G2, containing one T matrix 
only, which incidently may not be approximated, since 
the forces are supposed to be strong enough to bind the 
system. 

The main difference in both approaches, however, 
lies in the entirely different situations described by 
them.24 G2, Eq. (56), describes the propagation of a 
particle-hole pair and a collective state (zero sound) 
may appear. The G2, solution of Eq. (20), on the other 
hand, describes the scattering of a pair of particles. 
Anomalous poles there may correspond to Cooper 
states.11,25 

We now turn to the calculation of the polarization 
energy by Koltun and Wilets.9 In following Puff 
consistently, these authors calculate the polarization 
energy as the shift in the energy of the system in
cluding the external field, from which in the end the 
field energy is subtracted. The two methods should agree 
if no approximations are made. Since, however, both 
expansions retain terms proportional only to a0

2, one 
might expect differences. The treatment of the density 
propagator above is, indeed, in the spirit of the original 
Puff approximation. However, the interpretation of 
D(q0) as the polarization energy goes beyond that 
approximation and assumes the validity of a pertur
bation treatment of a ground state determined itself 
in an approximation, namely the MSP scheme. Koltun 
and Wilets on the other hand calculate, among other 
things, the modification of the Hartree field and of the 
ground state. The two resulting expressions are, indeed, 
dissimilar: In reference 9 the polarization energy 
appears expressed in terms of a solution of an integral 
equation, which contains quantities like A, T, V for 
negative frequencies only. Our result is an explicit 
integral in terms of the same quantities, but of their 
positive as well as negative frequency portions. Where 
direct comparison seems to be hard, it will certainly 
be of interest to see differences and their relative 
importance in the results of actual calculations, which 
will be undertaken. 
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In this paper we discuss some general properties of the one-particle Green's function, for nonuniform 
many-fermion systems and the associated single-particle interpretation of physical properties of such 
systems. We consider, in particular, the ground-state energy, the density of particles in the ground state, 
and the single-particle excitation spectrum. The investigation is restricted to the case of a static external 
field and a system at zero temperature. Various general approximation methods are studied starting from 
one in which the self-energy operator is replaced by an Hermitian and energy-independent operator. 

1. INTRODUCTION 

BY now, the theory of the Green's function approach 
to the analysis of uniform many-particle systems 

has been highly developed through the work of many 
authors.1-6 In contrast, the extension of the theory to 
nonuniform systems, even in the simplest case of a static 
external potential, has only recently received atten
tion7-11 and has not yet been treated in a comprehensive 
manner. 

It is true that the generalization of results to the non
uniform case usually turns out to be straightforward. 
One can fairly say that most of the hard questions— 
those connected with the specifically many-particle 
aspects of the problem—have already been answered 
by treating the uniform case. 

Nevertheless, for the purposes of practical calcula
tions on nonuniform systems and their physical inter
pretation, it is convenient to start from the more general 
formalism rather than modify the special case. More
over, certain new qualitative features do arise for 
nonuniform systems, for example the occurrence of 
bound single-particle excitations in the presence of an 
attractive potential even though the interparticle forces 
are repulsive. In this case, one is concerned with the 
behavior of the one-particle Green's function alone. 

*This research was supported in part by the U. S. Atomic 
Energy Commission. 
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It was, in fact, an example of just this kind—in 
connection with a perturbative calculation for a dense 
infinite electron gas in the presence of a point-positive 
charge12—that first drew the author's attention to the 
problems arising in the Green's function approach to 
nonuniform systems and to the incomplete nature of 
the existing treatment of the subject. 

For the above reasons, we have thought it worthwhile 
to emphasize here some general features of the analysis 
of nonuniform many-fermion systems in terms of 
properties of the one-particle Green's function, for the 
case of a static external potential. In the following 
paper, some of these results and concepts are applied to 
the above-mentioned problem of the single-particle 
excitation spectrum of a dense electron gas with a 
positive point charge. 

Let us recall that the one-particle Green's function is 
defined by 

G(x,x') = G(x,t;x'tf) = -i(T{t(xW(xf)}). (1) 

Here, \p(x) and \[/^(x') are second quantized Heisenberg 
operators at the space-time points x,x'; T is the time-
ordering operator and the brackets denote an expecta
tion value with respect to the ground state of the many-
body system.13,14 \f/(x) obeys the equation of motion16 

-*-iK*)=psr,iK*)l 
it 

(2) 

where H is the Hamiltonian of the many-particle 
system. 

In the case we are considering, H has the form 

H <Px^(x)[ +F(s;)>(a;) 
2m 

«Jl <Pxd*x' MxW(3f)v(x-oS)$(c</Mx), (3) 

18 A. J. Layzer, Bull. Am. Phys. Soc. 6, 447 (1961). 
13 For systems with degenerate ground states, we define the 

bracket symbol as including an additional average over the 
various degenerate ground states. 

14 Spin indices are suppressed. For spin-independent forces, G is 
diagonal in the spin coordinates and the diagonal elements are 
equal. 
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